

Question Paper Code: 52859

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Third/Fifth/Sixth Semester

Computer Science and Engineering

CS 6303 – COMPUTER ARCHITECTURE

(Common to: Electronics and Communication Engineering/Electronics and Communication Engineering/Electronics and Instrumentation Engineering/Instrumentation and Control Engineering/Robotics and Automation Engineering /Information Technology)

(Regulation 2013)

Also common to PTCS 6303 – Computer Architecture for Computer Science and Engineering (Fifth Semester – Regulation 2014)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Write the components of a computer system and list their functions.
- 2. Give the MIPS code for the statement f = (g + h) (i + j).
- 3. State the rules to add two integers.
- 4. Define scientific notation and normalized notation.
- 5. Define edge triggered clocking.
- 6. Identify the hazards with respect to a processor function.
- 7. Neatly sketch the three primary units of dynamically scheduled pipeline.
- 8. Define speculation with example.
- 9. What is miss penalty?
- 10. How many total bits are required for a direct-mapped cache with 16 KB of data and 4-word blocks, assuming a 32-bit address?

PART B - $(5 \times 13 = 65 \text{ marks})$

11. (a) Explain how performance is calculated in a computer system and derive the necessary performance equations.

- (b) Explain how instructions that involve decision making are executed with an example.
- (a) Discuss how ALU performs division with the flow chart and the block diagram.

- Explain floating point addition with a neat block diagram of ALU unit.
- Explain the process of building a single data-path with a neat diagram.

- (b) Explain data hazards and stalls with neat diagrams and suitable examples.
- 14. (a) Explain Flynn's classification with neat diagrams.

- Explain hardware multithreading with neat diagrams.
- Explain the process of measuring the performance of cache memory with required metrics?

Or

Explain the virtual memory organization followed in digital computers.

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

- Assume a two address format specified as source, destination, Examine the following sequence of instructions and explain the addressing modes used and the operation done in every instruction.
 - Move (R5)+,R0
 - ADD (R5)+,R0
 - MOVE RO. (R5)
 - Move 16(R5), R3
 - Add #40, R5

(5)

Consider the following code segment in C: a = b + e:

$$c = b + f$$

Here is the generated MIPS code for this segment, assuming all variables are in memory and are addressable as off sets from \$t0:

Find the hazards in the preceding code segment and reorder the instructions to avoid any pineline stalls? (10)

Or

- Analyze the merits and demerits of microprogrammed control over hardwired control
 - Analyze and tabulate the major features of programmed I/O, DMA and interrupts.